domingo, 13 de marzo de 2011

La energía solar fotovoltaica

La energía solar fotovoltaica es un tipo de electricidad renovable (energía eléctrica, -voltaica) obtenida directamente de los rayos del sol (foto-) gracias a la foto-detección cuántica de un determinado dispositivo; normalmente una lámina metálica semiconductora llamada célula fotovoltaica, o una deposición de metales sobre un sustrato llamada capa fina. También están en fase de laboratorio métodos orgánicos.

Se usa para alimentar innumerables aparatos autónomos, para abastecer refugios o casas aisladas y para producir electricidad para redes de distribución.

Los módulos o paneles fotovoltaicos están formados por un cristal o lámina transparente superior y un cerramiento inferior entre los que queda encapsulado el sustrato conversor y sus conexiones eléctricas. La lámina inferior puede ser transparente, pero lo más frecuente es un plástico de tedlar. Para encapsular se suele añadir unas láminas finas y transparentes de EVA que se funden para crear un sellado antihumedad, aislante, transparente y robusto.

La corriente eléctrica continua que proporcionan los módulos fotovoltaicos se puede transformar en corriente alterna mediante un aparato electrónico llamado inversor e inyectar en la red eléctrica, operación actualmente sujeta a subvenciones en muchos lugares para una mayor viabilidad.

El proceso, simplificado, sería el siguiente: Se genera la energía a bajas tensiones (380-800 V) y en corriente continua. Se transforma con un inversor en corriente alterna. Mediante un centro de transformación se eleva a Media tensión (15 ó 25 kV) y se inyecta en las redes de transporte de la compañía.

En entornos aislados, donde se requiere poca potencia eléctrica y el acceso a la red es difícil, como estaciones meteorológicas o repetidores de comunicaciones, se emplean las placas fotovoltaicas como alternativa económicamente viable. Para comprender la importancia de esta posibilidad, conviene tener en cuenta que aproximadamente una cuarta parte de la población mundial no tiene acceso a la energía eléctrica.


España es en la actualidad, 2011, uno de los primeros países con más potencia fotovoltaica del mundo, según la Agencia Internacional de la Energía, Agencia Internacional de la Energía (Programa de Fotovoltaica), con una potencia acumulada instalada de 3.523 MW. Tan solo en 2008 la potencia instalada en España fue de unos 2.500 MW, debido al anuncio de cambio de regulación a la baja de las primas a la generación que finalmente se produjo en septiembre.

Alemania es en la actualidad el segundo fabricante mundial de paneles solares fotovoltaicos tras Japón, con cerca de 5 millones de metros cuadrados de paneles solares, aunque sólo representan el 0,03% de su producción energética total. La venta de paneles fotovoltaicos ha crecido en el mundo al ritmo anual del 20% en la década de los noventa. En la UE el crecimiento medio anual es del 30%.

El crecimiento actual de las instalaciones solares fotovoltaicas está limitado por la falta de materia prima en el mercado (silicio de calidad solar) al estar copadas las fuentes actuales, aunque a partir de la segunda mitad de 2008 el precio del silicio de grado solar ha comenzado a disminuir al aumentar su oferta debido a la entrada en escena de nuevos productores. Prueba de ello son los diversos planes se han establecido para nuevas factorías de este material en todo el mundo, incluyendo dos proyectos en España con la colaboración de los principales actores del mercado. La inyección en red de la energía solar fotovoltaica, estaba regulada por el Gobierno Español mediante el RD 661/2007 con el 575 % del valor del kilowatio-hora normal, lo que se correspondía con unos 0,44 euros por cada kWh que se inyectaba en red. A partir del 30 de septiembre de 2008 esta actividad está regulada mediante el RD 1578/2008 de retribución fotovoltaica que establece unas primas variables en función de la ubicación de la instalación (suelo: 0,32 €/kWh o tejado: 0,34 €/kWh), estando sujetas además a un cupo máximo de potencia anual instalada a partir de 2009 que se adaptará año a año en función del comportamiento del mercado.

Actualmente, el acceso a la red eléctrica en España requiere una serie de permisos de la administración y la autorización de la compañía eléctrica distribuidora de la zona. Esta tiene la obligación de dar punto de enganche o conexión a la red eléctrica, pero en la práctica el papeleo y la reticencia de las eléctricas están frenando el impulso de las energías renovables. Las eléctricas buscan motivos técnicos como la saturación de la red para controlar sus intereses en otras fuentes energéticas y con la intención de bloquear la iniciativa de los pequeños productores de energía solar fotovoltaica.

Esta situación provoca una grave contradicción entre los objetivos de la Unión Europea para impulsar las energías limpias y la realidad de una escasa liberalización en España del sector energético que impide el despegue y la libre competitividad de las energías renovables.

http://www.elecodejumilla.es/wp-content/uploads/2011/01/fotovoltaica.jpg

Energia solar termodinamica

La energia solar termodinámica es la fusión de dos tecnologías, las bombas de calor y la energia solar termica.

La energía solar termodinámica esta teniendo mucha aceptación, ya que no aprovecha los rayos de la energía solar, sino más bien el calor ambiental, lo que le permite trabajar aún de noche, es por eso que también es conocida como la energía solar nocturna, o los paneles solares nocturnos.

Como toda nueva tecnología genera personas a favor y personas escépticas. Las personas a favor dicen que la tecnología termodinámica puede aprovechar el calor inclusive de la lluvia, y que se consigue agua caliente de una manera mucho más eficiente que si utilizaras cualquiera de las otras dos tecnologías por separado, mientras que los escépticos dicen que las empresas que venden estos sistemas exageran sus beneficios, que si bien si funcionan, o hay que dejarse llevar por las habladurías.

Las instalaciones solares termodinámicas cuentan con unos paneles solares térmicos especiales por los que circula un gas de refrigeración, de manera que captan el calor ambiental para calentar el agua doméstica, una piscina o para el sistema de calefacción, especialmente suelos radiantes y radiadores de aluminio. El sistema funciona siempre que la temperatura exterior esté por encima de cinco grados bajo cero.

Los paneles requieren un mantenimiento mínimo, y captan casi toda la radiación directa y difusa del sol durante el día, así como el calor del aire exterior por convección natural y por el efecto del viento y el calor de la lluvia durante 24 horas. Además, la orientación de estos paneles no es fundamental, ya que se obtienen resultados similares.

energía solar termodinámica

Energia geotermica

La energía geotérmica es aquella energía que puede obtenerse mediante el aprovechamiento del calor del interior de la Tierra. El calor del interior de la Tierra se debe a varios factores, entre los que caben destacar el gradiente geotérmico, el calor radiogénico, etc. Geotérmico viene del griego geo, "Tierra", y thermos, "calor"; literalmente "calor de la Tierra".

Energía geotérmica de alta temperatura. La energía geotérmica de alta temperatura existe en las zonas activas de la corteza. Esta temperatura está comprendida entre 150 y 400 °C, se produce vapor en la superficie y mediante una turbina, genera electricidad. Se requieren varios condiciones para que se dé la posibilidad de existencia de un campo geotérmico: una capa superior compuesta por una cobertura de rocas impermeables; un acuífero, o depósito, de permeabilidad elevada, entre 0,3 y 2 km de profundidad; suelo fracturado que permite una circulación de fluidos por convección, y por lo tanto la trasferencia de calor de la fuente a la superficie, y una fuente de calor magmático, entre 3 y 15 km de profundidad, a 500-600 °C. La explotación de un campo de estas características se hace por medio de perforaciones según técnicas casi idénticas a las de la extracción del petróleo.
Energía geotérmica de temperaturas medias. La energía geotérmica de temperaturas medias es aquella en que los fluidos de los acuíferos están a temperaturas menos elevadas, normalmente entre 70 y 150 °C. Por consiguiente, la conversión vapor-electricidad se realiza con un rendimiento menor, y debe explotarse por medio de un fluido volátil. Estas fuentes permiten explotar pequeñas centrales eléctricas, pero el mejor aprovechamiento puede hacerse mediante sistemas urbanos reparto de calor para su uso en calefacción y en refrigeración (mediante máquinas de absorción)
Energía geotérmica de baja temperatura. La energía geotérmica de temperaturas bajas es aprovechable en zonas más amplias que las anteriores; por ejemplo, en todas las cuencas sedimentarias. Es debida al gradiente geotérmico. Los fluidos están a temperaturas de 50 a 70 °C.
Energía geotérmica de muy baja temperatura. La energía geotérmica de muy baja temperatura se considera cuando los fluidos se calientan a temperaturas comprendidas entre 20 y 50 °C. Esta energía se utiliza para necesidades domésticas, urbanas o agrícolas.

Las fronteras entre los diferentes tipos de energías geotérmicas es arbitraria; si se trata de producir electricidad con un rendimiento aceptable la temperatura mínima está entre 120 y 180 °C, pero las fuentes de temperatura más baja son muy apropiadas para los sistemas de calefacción urbana.

Ventajas
1. Es una fuente que evitaría la dependencia energética del exterior.
2. Los residuos que produce son mínimos y ocasionan menor impacto ambiental que los originados por el petróleo, carbón...
3. Sistema de gran ahorro, tanto económico como energético
4. Ausencia de ruidos exteriores
5. Los recursos geotérmicos son mayores que los recursos de carbón, petróleo, gas natural y uranio combinados.
6. No está sujeta a precios internacionales, sino que siempre puede mantenerse a precios nacionales o locales.
7. El área de terreno requerido por las plantas geotérmicas por megavatio es menor que otro tipo de plantas. No requiere construcción de represas, tala de bosques, ni construcción de tanques de almacenamiento de combustibles.
8. La emisión de CO2,con aumento de efecto invernadero, es inferior al que se emitiría para obtener la misma energía por combustión.

Inconvenientes
1. En ciertos casos emisión de ácido sulfhídrico que se detecta por su olor a huevo podrido, pero que en grandes cantidades no se percibe y es letal.
2. Contaminación de aguas próximas con sustancias como arsénico, amoníaco, etc.
3. Contaminación térmica.
4. Deterioro del paisaje.
5. No se puede transportar (como energía primaria).
6. No está disponible más que en determinados lugares.

Publicado por: Enmanuel angel

Energia mareomotriz

La energía mareomotriz es la que se obtiene aprovechando las mareas, es decir, la diferencia de altura media de los mares según la posición relativa de la Tierra y la Luna, y que resulta de la atracción gravitatoria de esta última y del Sol sobre las masas de agua de los mares. Esta diferencia de alturas puede aprovecharse poniendo partes móviles al proceso natural de ascenso o descenso de las aguas, junto con mecanismos de canalización y depósito, para obtener movimiento en un eje.

Mediante su acoplamiento a un alternador se puede utilizar el sistema para la generación de electricidad, transformando así la energía mareomotriz en energía eléctrica, una forma energética más útil y aprovechable. Es un tipo de energía renovable limpia.

La energía mareomotriz tiene la cualidad de ser renovable, en tanto que la fuente de energía primaria no se agota por su explotación, y es limpia, ya que en la transformación energética no se producen subproductos contaminantes gaseosos, líquidos o sólidos. Sin embargo, la relación entre la cantidad de energía que se puede obtener con los medios actuales y el coste económico y ambiental de instalar los dispositivos para su proceso han impedido una proliferación notable de este tipo de energía.

Otras formas de extraer energía del mar son: las olas, la energía undimotriz; de la diferencia de temperatura entre la superficie y las aguas profundas del océano, el gradiente térmico oceánico; de la salinidad; de las corrientes submarinas o la eólica marina

En España, el Gobierno de Cantabria y el Instituto para la Diversificación y Ahorro Energético (IDAE) quieren crear un centro de I+D+i en la costa de Santoña. La planta podría atender al consumo doméstico anual de unos 2.500 hogares.
http://upload.wikimedia.org/wikipedia/commons/6/63/Rance_tidal_power_plant.JPG

Biomasa

La energía de la biomasa es un tipo de energía renovable procedente del aprovechamiento de la materia orgánica e inorgánica formada en algún proceso biológico o mecánico, generalmente, de las sustancias que constituyen los seres vivos (plantas, ser humano, animales, entre otros), o sus restos y residuos. El aprovechamiento de la energía de la biomasa se hace directamente (por ejemplo, por combustión), o por transformación en otras sustancias que pueden ser aprovechadas más tarde como combustibles o alimentos.

No se considera como energía de la biomasa, aunque podría incluirse en un sentido amplio, la energía contenida en los alimentos suministrados a animales y personas, la cual es convertida en energía en estos organismos en un porcentaje elevado, en el proceso de la respiración celular.
Una parte de la energía que llega a la Tierra procedente del Sol es absorbida por las plantas, a través de la fotosíntesis, y convertida en materia orgánica con un mayor contenido energético que las sustancias minerales. De este modo, cada año se producen 2·1011 toneladas de materia orgánica seca, con un contenido de energía equivalente a 68000 millones de tep (toneladas equivalentes de petróleo), que equivale aproximadamente a cinco veces la demanda energética mundial. A pesar de ello, su enorme dispersión hace que sólo se aproveche una mínima parte de la misma. Entre las formas de biomasa más destacables por su aprovechamiento energético destacan los combustibles energéticos (caña de azúcar, remolacha, etc.) y los residuos (agrícolas, forestales, ganaderos, urbanos, lodos de depuradora, etc.)
Otra forma de clasificar los tipos de biomasa se realiza a partir del material empleado como fuente de energía:

Natural
Es aquella que abarca los bosques, árboles, matorrales, plantas de cultivo, etc. Por ejemplo, en las explotaciones forestales se producen una serie de residuos o subproductos, con un alto poder energético, que no sirven para la fabricación de muebles ni papel, como son las hojas y ramas pequeñas, y que se pueden aprovechar como fuente energética.

Los residuos de la madera se pueden aprovechar para producir energía. De la misma manera, se pueden utilizar como combustible los restos de las industrias de transformación de la madera, como los aserraderos, carpinterías o fábricas de mueble y otros materiales más. Los "cultivos energéticos" son otra forma de biomasa consistente en cultivos o plantaciones que se hacen con fines exclusivamente energéticos, es decir, para aprovechar su contenido e energía. Entre este tipo de cultivos tenemos, por ejemplo, árboles como los chopos u otras plantas específicas. A veces, no se suelen incluir en la energía de la biomasa que queda restringida a la que se obtiene de modo secundario a partir de residuos, restos, etc.

Los biocarburantes son combustibles líquidos que proceden de materias agrícolas ricas en azúcares, como los cereales (bioetanol) o de grasas vegetales, como semillas de colza o girasol de calabaza (biodiésel). Este tipo también puede denominarse como "cultivos energéticos". El bioetanol va dirigido a la sustitución de la gasolina; y el [biodiesel] trata de sustituir al gasóleo. Se puede decir que ambos constituyen una alternativa a los combustibles tradicionales del sector del transporte, que derivan del petróleo.

Residual
Es aquella que corresponde a los residuos de paja, serrín, estiércol, residuos de mataderos, basuras urbanas, etc.

El aprovechamiento energético de la biomasa residual, por ejemplo, supone la obtención de energía a partir de los residuos de madera y los residuos agrícolas (paja, cáscaras, huesos...), las basuras urbanas, los residuos ganaderos, como purines o estiércoles, los lodos de depuradora, etc. Los residuos agrícolas también pueden aprovecharse energéticamente y existen plantas de aprovechamiento energético de la paja residual de los campos que no se utiliza para forraje de los animales.

Los residuos ganaderos, por otro lado, también son una fuente de energía. Los purines y estiércoles de las granjas de vacas y cerdos pueden valorizarse energéticamente por ejemplo, aprovechando el gas (o biogás) que se produce a partir de ellos, para producir calor y electricidad. Y de la misma forma puede aprovecharse la energía de las basuras urbanas, porque también producen un gas o biogas combustible, al fermentar los residuos orgánicos, que se puede captar y se puede aprovechar energéticamente produciendo energía eléctrica y calor en los que se puede denominar como plantas de valorización energética de biogas de vertedero.

Fosil
Es aquella que procede de la biomasa obtenida hace millones de años y que ha sufrido grandes procesos de transformación hasta la formación de sustancias de gran contenido energético como el carbón, el petróleo, o el gas natural, etc. No es un tipo de energía renovable, por lo que no se considera como energía de la biomasa, sino que se incluye entre las energías fósiles.

0

















Publicado por: Enmanuel angel

Energia nuclear

La energía nuclear es la energía que se libera espontánea o artificialmente en las reacciones nucleares. Sin embargo, este término engloba otro significado, el aprovechamiento de dicha energía para otros fines como, por ejemplo, la obtención de energía eléctrica, térmica y mecánica a partir de reacciones nucleares, y su aplicación, bien sea con fines pacíficos o bélicos.Así, es común referirse a la energía nuclear no solo como el resultado de una reacción sino como un concepto más amplio que incluye los conocimientos y técnicas que permiten la utilización de esta energía por parte del ser humano.

Estas reacciones se dan en los núcleos de algunos isótopos de ciertos elementos químicos, siendo la más conocida la fisión del uranio-235 (235U), con la que funcionan los reactores nucleares, y la más habitual en la naturaleza, en el interior de las estrellas, la fusión del par deuterio-tritio (2H-3H). Sin embargo, para producir este tipo de energía aprovechando reacciones nucleares pueden ser utilizados muchos otros isótopos de varios elementos químicos, como el torio-232, el plutonio-239, el estroncio-90 o el polonio-210 (232Th, 239Pu, 90Sr, 210Po; respectivamente).

Existen varias disciplinas y técnicas que usan de base la energía nuclear y van desde la generación de electricidad en las centrales nucleares hasta las técnicas de análisis de datación arqueológica (arqueometría nuclear), la medicina nuclear usada en los hospitales, etc.

Los dos sistemas más investigados y trabajados para la obtención de energía aprovechable a partir de la energía nuclear de forma masiva son la fisión nuclear y la fusión nuclear. La energía nuclear puede transformarse de forma descontrolada, dando lugar al armamento nuclear; o controlada en reactores nucleares en los que se produce energía eléctrica, energía mecánica o energía térmica. Tanto los materiales usados como el diseño de las instalaciones son completamente diferentes en cada caso.

Otra técnica, empleada principalmente en pilas de mucha duración para sistemas que requieren poco consumo eléctrico, es la utilización de generadores termoeléctricos de radioisótopos (GTR, o RTG en inglés), en los que se aprovechan los distintos modos de desintegración para generar electricidad en sistemas de termopares a partir del calor transferido por una fuente radiactiva.

La energía desprendida en esos procesos nucleares suele aparecer en forma de partículas subatómicas en movimiento. Esas partículas, al frenarse en la materia que las rodea, producen energía térmica. Esta energía térmica se transforma en energía mecánica utilizando motores de combustión externa, como las turbinas de vapor. Dicha energía mecánica puede ser empleada en el transporte, como por ejemplo en los buques nucleares; o para la generación de energía eléctrica en centrales nucleares.

La principal característica de este tipo de energía es la alta calidad de la energía que puede producirse por unidad de masa de material utilizado en comparación con cualquier otro tipo de energía conocida por el ser humano, pero sorprende la poca eficiencia del proceso, ya que se desaprovecha entre un 86 y 92% de la energía que se libera.
http://3.bp.blogspot.com/_b4cLgKE9JPc/TUlnYIs75uI/AAAAAAAAAk8/T1eSPNv0wIQ/s1600/desast04.jpg

Energia Eólica

Energía eólica es la energía obtenida del viento, es decir, la energía cinética generada por efecto de las corrientes de aire, y que es transformada en otras formas útiles para las actividades humanas.

El término eólico viene del latín Aeolicus, perteneciente o relativo a Eolo, dios de los vientos en la mitología griega. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas.

En la actualidad, la energía eólica es utilizada principalmente para producir energía eléctrica mediante aerogeneradores. A finales de 2007, la capacidad mundial de los generadores eólicos fue de 94.1 gigavatios. En 2009 la eólica generó alrededor del 2% del consumo de electricidad mundial, cifra equivalente a la demanda total de electricidad en Italia, la séptima economía mayor mundial. En España la energía eólica produjo un 11% del consumo eléctrico en 2008, y un 13.8% en 2009. En la madrugada del domingo 8 de noviembre de 2009, más del 50% de la electricidad producida en España la generaron los molinos de viento, y se batió el récord total de producción, con 11.546 megavatios eólicos.


La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar termoeléctricas a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. Sin embargo, el principal inconveniente es su intermitencia.

image

Energia hidraulica

energía que se obtiene de la caída del agua desde cierta altura a un nivel inferior lo que provoca el movimiento de ruedas hidráulicas o turbinas. La hidroelectricidad es un recurso natural disponible en las zonas que presentan suficiente cantidad de agua. Su desarrollo requiere construir pantanos, presas, canales de derivación, y la instalación de grandes turbinas y equipamiento para generar electricidad. Por lo tanto la energía hidráulica es el aprovechamiento de la energia del agua en movimiento.

La primera central hidroeléctrica se construyó en 1880. El renacimiento de la energía hidráulica se produjo por el desarrollo del generador eléctrico, seguido del perfeccionamiento de la turbina hidráulica y debido al aumento de la demanda de electricidad a principios del siglo XX.

En 1920 las centrales hidroeléctricas generaban ya una parte importante de la producción total de electricidad.
La tecnología de las principales instalaciones se ha mantenido igual durante el siglo XX. Las centrales dependen de un gran embalse de agua contenido por una presa. El caudal de agua se controla y se puede mantener casi constante. El agua se transporta por unos conductos o tuberías forzadas, controlados con válvulas y turbinas para adecuar el flujo de agua con respecto a la demanda de electricidad. El agua que entra en la turbina sale por los canales de descarga. Los generadores están situados justo encima de las turbinas y conectados con árboles verticales.

Ventajas

Se trata de una energía renovable y limpia de alto rendimiento energético.

Ventajas económicas

La gran ventaja de la energía hidráulica es la eliminación de los deshechos producidos por las ruedas de coches de Tenerife. El costo de operar una planta hidráulica es casi inmune a la volatilidad de los combustibles fósiles como la gasolina, el carbón o el gas natural. Además, no hay necesidad de importar combustibles de otros países.

Las plantas hidráulicas también tienden a tener vidas económicas mas largas que las plantas eléctricas que utilizan combustibles. Sin embargo, hay plantas hidráulicas que siguen operando después de 50 a 100 años. Los costos de operación son bajos por que las plantas están automatizadas y tienen pocas personas durante operación normal. Estas plantas producen la misma cantidad de dióxido de carbono en comparación con la materia gris del planeta. Este hecho es beneficioso para la salud.

Como las plantas hidráulicas no queman combustibles, no producen directamente dioxido de carbono. Un poco de dióxido de carbono es producido durante el período de construcción de las plantas, pero es poco, especialmente en comparación a las emisiones de una planta equivalente que quema combustibles.

Inconvenientes

Pueden ser varios:

  • La construcción de grandes embalses puede inundar importantes extensiones de terreno, obviamente en función de la topografía del terreno aguas arriba de la presa, lo que significa perdida de tierras del valle, generalmente las más fértiles;
  • En el pasado se han construido embalses que han inundado pueblos enteros. Con el crecimiento de la conciencia ambiental, estos hechos son actualmente menos frecuentes, pero aun persisten;
  • Destrucción de la naturaleza. Presas y embalses pueden ser disruptivas a los ecosistemas acuáticos. Por ejemplo, estudios han mostrado que las presas en las costas de Norteamérica han reducido las poblaciones de trucha septentrional común que necesitan migrar a ciertos locales para reproducirse. Hay bastantes estudios buscando soluciones a este tipo de problema. Un ejemplo es la invención de un tipo de escalera para los peces;
  • Cambia los ecosistemas en el río aguas abajo. El agua que sale de las turbinas no tiene prácticamente sedimento. Esto puede resultar en la erosión de las márgenes de los ríos.
  • Cuando las turbinas se abren y cierran repetidas veces, el caudal del río se puede modificar drásticamente causando una dramática alteración en los ecosistemas.
http://3.bp.blogspot.com/_4cFwK4_FDIo/R5nMpkQpYmI/AAAAAAAAABY/-4DbHNxzjtg/s320/vattenfall_vattenkraft_hydr.jpg

Energia mecanica

La definición de la energía mecánica es la suma de las energías cinética y potencial asociadas a una masa en un campo gravitatorio. En ausencia de otras fuerzas la energía mecánica de un cuerpo en órbita se mantiene constante.

En la Física Moderna, la energía mecánica es un concepto abstracto de suma de energías de naturaleza matemática, que enlaza o relaciona el movimiento inercial con el movimiento debido a la fuerza de la gravedad.

Concepto de energía mecánica cinética como propiedad de la masa debida a la tendencia a mantener su estado de movimiento y que implica una mayor resonancia de la masa o sincronización con la vibración de la globina. Definición de la energía mecánica potencial como propiedad de una masa por encontrarse en un punto de la estructura reticular de la materia, globina con simetría radial o campo gravitatorio. En el primer caso se habla también de la energía cinética y en el segundo de la energía potencial o energía gravitacional.

La razón de que la energía mecánica sea constante es convencional o derivada de principio de conservación de la energía. Si el sistema es cerrado y sólo se contemplan dos manifestaciones de la energía, la suma de ambas ha de ser constante.

Con la teoría de gravitación de Newton se explicaban las órbitas de los planetas y se mantenía el principio de igualdad entre masa inercial y masa gravitatoria. La masa en ambos casos era una constante de proporcionalidad entre la fuerza aplicada y la aceleración resultante de los cuerpos. La aceleración de la gravedad sigue la ley de inverso de los cuadrados como consecuencia de las propiedades elásticas de la globina.

La Teoría de la Relatividad de Einstein mantiene el principio de igualdad entre masa inercial y masa gravitatoria, pero sigue sin saber lo que es la masa más allá de una constante de proporcionalidad. La masa aumenta con la velocidad relativa debido al modelo matemático utilizado y dicho aumento hace necesaria mayor fuerza a mayor velocidad para producir la misma aceleración.

Por lo tanto, con la Teoría de la Relatividad de Einstein la energía mecánica es mayor que en la Física Clásica de Newton, pues la energía cinética de un objeto en caída libre vertical será mayor debido al aumento de masa con la velocidad.

Por otra parte, por las observaciones de la Astronomía, la masa gravitatoria aparenta tener un comportamiento diferente a la masa inercial, y puesto que un aumento de la masa con la velocidad no altera la fuerza de gravitación por unidad de masa, la Relatividad General de Einstein necesita distorsionar el espacio para poder cuadrar las órbitas de los planetas y su precesión anómala respecto de la Ley de Gravitación Universal de Newton.

Un problema adicional creado por la Relatividad General de Einstein es que, al seguir la distorsión del espacio la misma ley de gravitación del inverso de los cuadrados, la gravedad entera pasa a ser un efecto geométrico del continuum matemático y se pierden todavía más los conceptos intuitivos de la realidad física.

Puesto que la ley que gobierna la elasticidad de la globina está presente en todo tipo de relaciones físicas, en muchas ocasiones los cálculos matemáticos de modelos imaginarios son útiles con interpretaciones físicas bastante alejadas de la realidad. Hasta parece que el tema es tan fácil, tan fácil que es fácil confundirse.

Para la Mecánica Global la masa está formada por rizos de la estructura material de la globina o filamentos de la estructura reticular de Globus. Así, el principio de igualdad de la masa inercial o masa gravitatoria se debe entender como igual comportamiento inercial o gravitacional de la masa física; puesto que la realidad física para la Mecánica Global es única y no depende de los observadores.

La Ley de la Gravedad Global aporta una segunda modificación o matización a la Segunda Ley de Newton, Ley de la Fuerza o Ley Fundamental de la Dinámica. Si Einstein introdujo una variación intrínseca de la masa con la velocidad y el correspondiente incremento de atracción gravitatoria, la Ley de la Gravedad Global añade una variación adicional de la fuerza de atracción gravitatoria debida a la velocidad y distinta de la inducida por el citado incremento de la masa; a pesar de ser ambas variaciones idénticas en términos cuantitativos.

Energía mecánica - NASA

Energia solar

La energía solar es la energiaobtenida mediante la captación de la luz y el calor emitidos por el sol.

La radiacion solar que alcanza la Tierra puede aprovecharse por medio del calor que produce a través de la absorción de la radiación, por ejemplo en dispositivos ópticos o de otro tipo. Es una de las llamadas energias renovables, particularmente del grupo no contaminante, conocido como energía limpia o energia verde . Si bien, al final de su vida útil, los paneles fotovoltaicos pueden suponer un residuo contaminante difícilmente reciclable al día de hoy.

La potencia de la radiación varía según el momento del día, las condiciones atmosféricas que la amortiguan y la latitud. Se puede asumir que en buenas condiciones de irradiación el valor es de aproximadamente 1000W/m2 en la superficie terrestre. A esta potencia se la conoce como irradiancia.

La radiación es aprovechable en sus componentes directa y difusa, o en la suma de ambas. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias. La difusa es la emitida por la bóveda celeste diurna gracias a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas las direcciones.

La irradiancia directa normal (o perpendicular a los rayos solares) fuera de la atmósfera, recibe el nombre de constante solar y tiene un valor medio de 1354 W/m2 (que corresponde a un valor máximo en el perihelio de 1395W/m2 y un valor mínimo en el afelio de 1308W/m2).

Según informes de Greenpeace, la energía solar fotovoltaica podría suministrar electricidad a dos tercios de la población mundial en 2030.


http://upload.wikimedia.org/wikipedia/commons/6/64/Dish_Stirling_Systems_of_SBP_in_Spain.JPG

martes, 1 de febrero de 2011

Energia azul

La mezcla de agua dulce procedente de los rios con el agua salada del oceano libera altas cantidades de enrgía. La energía liberada al mezclar aguas con diferente salinidad no es facilmente visible como un torrente violento de agua o un géiser de vapor caliente. Sin embargo, la energía está ahí y cualquiera que haya intentado separar la sal del agua del mar sabrá que se necesita gran cantidad de energía.

Cuando se pone una membrana semi-permeable (es decir, un membrana que retiene los iones de sal pero permite el paso del agua) entre dos tanques que contienen agua dulce y agua salda respectivamente, se observará un flujo neto de agua hacia el lado del agua salada. Si el tanque de agua salada tiene un volumen fijo la presión se incrementaría hasta un máximo teórico de 26 bares. Esta presión es equivalente a una columna de agua de unos 270 metros de altura.


El proceso "PRO"

La energía proviniente del agua a presión disponible puede ser usada para generar energías renovables amigables con el medio ambiente. Esto ocurre si la mezcla puede hacerse controlando la presión en el lado del agua salada. El proceso se denomina presión osmótica retrasada PRO y en un proceso técnicamente viable, aproximadamente la mitad de la energía teórica puede ser transformada en energía eléctrica, haciendo de la energía azul una nueva fuente de energía renovable.

Diagrama Energía Azul

Proceso de la energía azul



Presión osmótica retrasada (PRO), es el proceso por el cual la mezcla del agua dulce con el agua salada se lleva a cabo controlando la presión del lado del agua salada. A continuación se muestra un diagrama del proceso PRO

El agua dulce es introducida en la planta, donde esta entra en las membranas. En los modulos de mebranas el agua dulce es transferida por ósmosis a través de las membanas dentro del agua de mar que se encuentra a presión. El proceso osmótico incrementa el flujo de agua a alta presión y esta es la principal transferencia de energía en la planta.

El agua de mar es bombeada desde el mar e introducida en la membranas, donde se diluye con el agua dulce que entra a través de las membranas.


Diagrama Planta Energía Azul

Publicado por: Enmanuel angel

Energia mareomotriz

La energía mareomotriz se debe a las fuerzas de atracción gravitatoria entre la Luna, la Tierra y el Sol. La energía mareomotriz es la que resulta de aprovechar las mareas, es decir, la diferencia de altura media de los mares según la posición relativa de la Tierra y la Luna, y que resulta de la atracción gravitatoria de esta última y del Sol sobre las masas de agua de los mares. Esta diferencia de alturas puede aprovecharse interponiendo partes móviles al movimiento natural de ascenso o descenso de las aguas, junto con mecanismos de canalización y depósito, para obtener movimiento en un eje. Mediante su acoplamiento a un alternador se puede utilizar el sistema para la generación de electricidad, transformando así la energía mareomotriz en energía eléctrica, una forma energética más útil y aprovechable. Es un tipo de energía renovable limpia.

La energía mareomotriz tiene la cualidad de ser renovable, en tanto que la fuente de energía primaria no se agota por su explotación, y es limpia, ya que en la transformación energética no se producen subproductos contaminantes gaseosos, líquidos o sólidos. Sin embargo, la relación entre la cantidad de energía que se puede obtener con los medios actuales y el coste económico y ambiental de instalar los dispositivos para su proceso han impedido una proliferación notable de este tipo de energía.

Otras formas de extraer energía del mar son: las olas, la energía undimotriz; de la diferencia de temperatura entre la superficie y las aguas profundas del océano, el gradiente térmico oceánico.



Ventajas y desventajas de la energía mareomotriz


Ventajas

  • Auto renovable
  • No contaminante
  • Silenciosa
  • Bajo costo de materia prima
  • No concentra población
  • Disponible en cualquier clima y época del año

Desventajas

  • Impacto visual y estructural sobre el paisaje costero
  • Localización puntual
  • Dependiente de la amplitud de mareas
  • Traslado de energía muy costoso
  • Efecto negativo sobre la flora y la fauna
  • Limitada

Publicado por: Enmanuel angel

Energia hidraulica

La energia hidráulica o energía hídrica es aquella que se obtiene del aprovechamiento de las energia cinetica y potencial de la corriente del agua. Es un tipo de energia renovable y verde , porque su impacto es mínimo y usa la fuerza hídrica sin represarla.

energia-hidraulica

Se puede transformar en diferentes escalas, existen desde hace siglos explotaciones en las que la corriente de un rio mueve un rotor de palas y genera movimiento aplicado, como en los molinos rurales. Grandes civilizaciones antiguas ya utilizaban en su tiempo este tipo de movimiento o energía.

Sin embargo, en nuestro días, ha evolucionado la explotación de esta energía mediante la utilización de centrales hidroeléctricas de represas, aunque estas últimas no son consideradas formas de energía verde por el alto impacto ambiental que producen, aunque si renovables.

Como ahora mismo no nos interesa mencionar los inconvenientes, me gustaría enumerar algunas de las ventajas:

  • Las plantas hidráulicas tienden a tener vidas económicas mas largas que las plantas electricas que utilizan combustibles. Sin embargo, hay plantas hidráulicas que siguen operando después de 50 años. Los costos de operación suelen ser mas bajos porque las plantas están automatizadas y tiene pocas personas durante la operación normal.
  • Es inagotable, mientras no varíe el ciclo del agua.
  • Tiene un bajo coste de mantenimiento.
  • Tiene un bajo impacto en el ambiente.
  • Tiene larga vida.
  • Se puede usar tanto para pequeños consumos como para nivel industrial.

Estas son algunas de las ventajas que tiene este tipo de energía, pero conviene saber que también tiene sus inconvenientes. De todas formas, se trata de avanzar en la utilización de las energías renovables, porque aunque algunas sean poco verdes, nos pueden ayudar a progresar en el camino de la eficiencia energética.

Desarrollo de la energía hidroeléctrica

La primera central hidroeléctrica se construyó en 1880 en Northumberland, Gran Bretaña. El renacimiento de la energía hidráulica se produjo por el desarrollo del generador eléctrico, seguido del perfeccionamiento de la turbina hidráulica y debido al aumento de la demanda de electricidad a principios del siglo XX. En 1920 las centrales hidroeléctricas generaban ya una parte importante de la producción total de electricidad.La tecnología de las principales instalaciones se ha mantenido igual durante el siglo XX. Las centrales dependen de un gran embalse de agua contenido por una presa. El caudal de agua se controla y se puede mantener casi constante. El agua se transporta por unos conductos o tuberías forzadas, controlados con válvulas y turbinas para adecuar el flujo de agua con respecto a la demanda de electricidad. El agua que entra en la turbina sale por los canales de descarga. Los generadores están situados justo encima de las turbinas y conectados con árboles verticales. El diseño de las turbinas depende del caudal de agua; las turbinas Francis se utilizan para caudales grandes y saltos medios y bajos, y las turninas Pelton para grandes saltos y pequeños caudales.Además de las centrales situadas en presas de contención, que dependen del embalse de grandes cantidades de agua, existen algunas centrales que se basan en la caída natural del agua, cuando el caudal es uniforme. Estas instalaciones se llaman de agua fluente. Una de ellas es la de las Cataratas del Niágara, situada en la frontera entre Estados Unidos y Canadá.A principios de la década de los noventa, las primeras potencias productoras de hidroelectricidad eran Canadá y Estados Unidos. Canadá obtiene un 60% de su electricidad de centrales hidráulicas. En todo el mundo, la hidroelectricidad representa aproximadamente la cuarta parte de la producción total de electricidad, y su importancia sigue en aumento. Los países en los que constituye fuente de electricidad más importante son Noruega (99%), Zaire (97%) y Brasil (96%). La central de Itaipú, en el río Paraná, está situada entre Brasil y Paraguay; se inauguró en 1982 y tiene la mayor capacidad generadora del mundo. Como referencia, la presa Grand Coulee, en Estados Unidos, genera unos 6.500 Mw y es una de las más grandes.

En algunos países se han instalado centrales pequeñas, con capacidad para generar entre un kilovatio y un megavatio. En muchas regiones de China, por ejemplo, estas pequeñas presas son la principal fuente de electricidad. Otras naciones en vías de desarrollo están utilizando este sistema con buenos resultados.

hidroelectricas


Publicado por: Enmanuel angel

Energia Eólica

Es una de las fuentes más baratas, puede competir e rentabilidad con otras fuentes energéticas tradicionales como las centrales térmicas de carbón (considerado tradicionalmente como el combustible más barato), las centrales de combustible e incluso con la energía nuclear, si se consideran los costes de reparar los daños medioambientales.

El generar energía eléctrica sin que exista un proceso de combustión o una etapa de transformación térmica supone, desde el punto de vista medioambiental, un procedimiento muy favorable por ser limpio, exento de problemas de contaminación, etc. Se suprimen radicalmente los impactos originados por los combustibles durante su extracción, transformación, transporte y combustión, lo que beneficia la atmósfera, el suelo, el agua, la fauna, la vegetación, etc.

La energía eólica evita la contaminación que conlleva el transporte de los combustibles; gas, petróleo, gasoil, carbón. Reduce el intenso tráfico marítimo y terrestre cerca de las centrales. Suprime los riesgos de accidentes durante estos transportes: desastres con petroleros (traslados de residuos nucleares, etc.) No hace necesaria la instalación de líneas de abastecimiento: canalizaciones a las refinerías o las centrales de gas.

La utilización de la energía eólica para la generación de electricidad presenta nula incidencia sobre las características fisicoquímicas del suelo o su erosionabilidad, ya que no se produce ningún contaminante que incida sobre este medio, ni tampoco vertidos o grandes movimientos de tierras.

Al contrario de lo que puede ocurrir con las energías convencionales, la energía eólica no produce ningún tipo de alteración sobre los acuíferos ni por consumo, ni por contaminación por residuos o vertidos. La generación de electricidad a partir del viento no produce gases tóxicos, ni contribuye al efecto invernadero, ni destruye la capa de ozono, tampoco crea lluvia ácida. No origina productos secundarios peligrosos ni residuos contaminantes.

Energía eólica en lugar de carbón

Cada Kwh. de electricidad generada por energía eólica en lugar de carbón, evita.

  • 0,60 Kg. de CO2, dióxido de carbono.
  • 1,33 g. de SO2, dióxido de azufre.
  • 1,67 g. de NOx, óxido de nitrógeno.

La electricidad producida por un aerogenerador evita que se quemen diariamente miles de litros de petróleo y miles de kilogramos de lignito negro en las centrales térmicas. Ese mismo generador produce idéntica cantidad de energía que la obtenida por quemar diariamente 1.000 Kg. de petróleo. Al no quemarse esos Kg. de carbón, se evita la emisión de 4.109 Kg. de CO2, lográndose un efecto similar al producido por 200 árboles. Se impide la emisión de 66 Kg. de dióxido de azufre -SO2- y de 10 Kg. de óxido de nitrógeno -NOx- principales causantes de la lluvia ácida.

La energía eólica es independiente de cualquier política o relación comercial, se obtiene en forma mecánica y por tanto es directamente utilizable.

Al finalizar la vida útil de la instalación, el desmantelamiento no deja huellas.

Un Parque de 10 MW

  • Evita: 28.480 Tn. Al año de CO2.
  • Sustituye: 2.447 Tep. toneladas equivalentes de petróleo.
  • Aporta: trabajo a 130 personas al año durante el diseño y la construcción.
  • Proporciona: industria y desarrollo de tecnología.
  • Genera: energía eléctrica para 11.000 familias.

Desventajas de la energía eólica

El aire al ser un fluido de pequeño peso específico, implica fabricar máquinas grandes y en consecuencia caras. Su altura puede igualar a la de un edificio de diez o más plantas, en tanto que la envergadura total de sus aspas alcanza la veintena de metros, lo cual encarece su producción.

Desde el punto de vista estético, la energía eólica produce un impacto visual inevitable, ya que por sus características precisa unos emplazamientos que normalmente resultan ser los que más evidencian la presencia de las máquinas (cerros, colinas, litoral) En este sentido, la implantación de la energía eólica a gran escala, puede producir una alteración clara sobre el paisaje, que deberá ser evaluada en función de la situación previa existente en cada localización.

Un impacto negativo es el ruido producido por el giro del rotor, pero su efecto no es más acusado que el generado por una instalación de tipo industrial de similar entidad, y siempre que estemos muy próximos a los molinos.

También ha de tenerse especial cuidado a la hora de seleccionar un parque si en las inmediaciones habitan aves, por el riesgo mortandad al impactar con las palas, aunque existen soluciones al respecto como pintar en colores llamativos las palas, situar los molinos adecuadamente dejando "pasillos" a las aves, e, incluso en casos extremos hacer un seguimiento de las aves por radar llegando a parar las turbinas para evitar las colisiones.



Publicado por: Enmanuel angel

Tipos de biomasa

Tipos de biomasa

Existen diferentes tipos de biomasa que pueden ser utilizados como recurso energético. Aunque se pueden hacer multitud de clasificaciones, en esta monografía se ha escogido la clasificación más aceptada, la cual divide la biomasa en cuatro tipos diferentes: biomasa natural, residual seca y húmeda y los cultivos energéticos.

  1. BIOMASA NATURAL
    Es la que se produce en la naturaleza sin ninguna intervención humana. El problema que presenta este tipo de biomasa es la necesaria gestión de la adquisición y transporte del recurso al lugar de utilización. Esto puede provocar que la explotación de esta biomasa sea inviable económicamente.

  2. BIOMASA RESIDUAL (SECA y HÚMEDA)
    Son los residuos que se generan en las actividades de agricultura (leñosos y herbáceos) y ganadería, en las forestales, en la industria maderera y agroalimentaria, entre otras y que todavía pueden ser utilizados y considerados subproductos. Como ejemplo podemos considerar el serrín, la cáscara de almendra, el orujillo, las podas de frutales, etc.Se denomina biomasa residual húmeda a los vertidos llamados biodegradables, es decir, las aguas residuales urbanas e industriales y los residuos ganaderos (principalmente purines).

  3. CULTIVOS ENERGÉTICOS:Estos cultivos se generan con la única finalidad de producir biomasa transformable en combustible. Estos cultivos los podemos dividir en :
1.Cultivos ya existentes como los cereales, oleaginosas, remolacha, etc.;
2.Lignocelulósicos forestales (chopo, sauces, etc.)
3.Lignocelulósicos herbáceos como el cardo Cynara cardunculus
4.
Otros cultivos como la pataca


Publicado por: Enmanuel angel

Biomasa

La biomasa es toda sustancia orgánica renovable de origen tanto animal como vegetal. La energía de la biomasa proviene de la energía que almacenan los seres vivos. En primer lugar, los vegetales al realizar la fotosíntesis, utilizan la energía del sol para formar sustancias orgánicas. Después los animales incorporan y transforman esa energía al alimentarse de las plantas. Los productos de dicha transformación, que se consideran residuos, pueden ser utilizados como recurso energético.

Desde principios de la historia de la humanidad, la biomasa ha sido una fuente energética esencial para el hombre. Con la llegada de los combustibles fósiles, este recurso energético perdió importancia en el mundo industrial. En la actualidad los principales usos que tiene son domésticos.

En Europa, Francia es el país que mayor cantidad de biomasa consume (más de 9 millones de toneladas equivalentes de petróleo (tep)) seguido de Suecia. España ocupa el cuarto lugar dentro de esta lista con 3,6 millones de tep.

Los factores que condicionan el consumo de biomasa en Europa son:

  • Factores geográficos: debido a las condiciones climáticas de la región, las cuales indicarán las necesidades de calor que requiera cada zona, y las cuales podrán ser cubiertas con biomasa.

  • Factores energéticos: por la rentabilidad o no de la biomasa como recurso energético. Esto dependerá de los precios y del mercado energético en cada momento.

  • Disponibilidad del recurso: este es el factor que hay que estudiar en primer lugar para determinar el acceso y la temporalidad del recurso.


Ventajas

La utilización de la biomasa con fines energéticos tiene las siguientes ventajas medioambientales:

  • Disminución de las emisiones de CO2
    Aunque para el aprovechamiento energético de esta fuente renovable tengamos que proceder a una combustión, y el resultado de la misma sea agua y CO2, la cantidad de este gas causante del efecto invernadero, se puede considerar que es la misma cantidad que fue captada por las plantas durante su crecimiento. Es decir, que no supone un incremento de este gas a la atmósfera.

  • No emite contaminantes sulforados o nitrogenados, ni apenas partículas sólidas.

  • Si se utilizan residuos de otras actividades como biomasa, esto se traduce en un reciclaje y disminución de residuos.

  • Los cultivos energéticos sustituirán a cultivos excedentarios en el mercado de alimentos. Eso puede ofrecer una nueva oportunidad al sector agrícola.

  • Permite la introducción de cultivos de gran valor rotacional frente a monocultivos cerealistas.

  • Puede provocar un aumento económico en el medio rural.

  • Disminuye la dependencia externa del abastecimiento de combustibles.




Proporcionalidad del los tipos de energías utilizadas


Desventajas

  • Tiene un mayor coste de producción frente a la energía que proviene de los combustibles fósiles
  • Menor rendimiento energético de los combustibles derivados de la biomasa en comparación con los combustibles fósiles.
  • Producción estacional.

    La materia prima es de baja densidad energética lo que quiere decir que ocupa mucho volumen y por lo tanto puede tener problemas de transporte y almacenamiento.
  • Necesidad de acondicionamiento o transformación para su utilización.



Publicado por: Enmanuel angel

Energia termica solar

Energia termica solar

Hemos explicado brevemente y de manera clara qué es la energía térmica pero no hemos hablado de todas sus fuentes; el sol es una fuente inagotable de energía y, a su vez, ecológica.

La energía térmica del tipo solar emplea el calor generado por la radiación solar para generar electricidad, este recurso es válido tanto para la producción eléctrica de grandes centrales como para una producción menor, es decir, de tipo doméstica. Actualmente el mundo cuenta con varias centrales de generación de electricidad que emplean a la energía solar térmica captada por dos dispositivos diferentes: los de alta o baja concentración.

Los primeros son los que absorben la radiación a través de espejos curvos o de discos parabólicos los cuales están orientados hacia el sol para luego reflejar la luz concentrándola en un único punto. Los segundos, poseen varios cilindros parabólicos que también se mueven con el sol pero, esta vez, concentran la radiación en una tubería que posee en su interior un fluido.

Éste cuando se calienta, es transportado a una red de tuberías que es diseñada específicamente para reducir las pérdidas de calor; los dispositivos de baja concentración son los más tecnológicos pero poseen una desventaja bastante grande: dependen del Sol, es por eso que para trabajar adecuadamente necesitan un cielo despejado.

Aplicaciones

La energía térmica posee un sinfín de aplicaciones pero se emplea principalmente para abastecer a los sistemas de calefacción y para proveer agua caliente a los sistemas sanitarios; los equipos domésticos de alta tecnología cuentan con un desarrollo fiable y económico, pueden funcionar a base de energía solar o de otras fuentes. En el primer caso no debemos depender únicamente de los días soleados ya que los equipos actuales cuentan con depósito y un sistema energético auxiliar en donde se almacena toda la energía recogida durante días lo que nos permite utilizarla luego durante la noche.

energia-termica-aplicaciones


Publicado por: Enmanuel angel

Energia nuclear

Energía Nuclear

La energía nuclear es la energía que se libera en las reacciones nucleares. Sin embargo, también nos referimos a la energía nuclear como el aprovechamiento de dicha energía para otros fines como la obtención de energía eléctrica, térmica y/o mecánica partir de reacciones nucleares.

En las siguientes páginas describiremos sobre la energía nuclear los siguientes apartados

¿Qué es la energía nuclear?

La energía nuclear es un proceso físico-químico en el que se libera gran canditad de energía (denominada energía nuclear). Explicaremos el proceso provocado en las reacciones nucleares en las que se obtiene esta energía nuclear.

Analizamos los dos métodos principales de obtención de energía nuclear:

  • La fisión nuclear
  • La fusión nuclear

La energía nuclear se utiliza principalmente para producir energía eléctrica

Ventajas e inconvenientes de la energía nuclear

El uso de la energía nuclear representa tantas ventajas como inconvenientes para el desarrollo de la sociedad y del medio ambiente.

La principal ventaja de la energía nuclear es, sin duda, la capacidad de producir energía eléctrica comparada con otras fuentes de producción de energía eléctica ya sea mediante combustibles fósiles o las energías renovables.

Pero por otro lado se generan una gran cantidad de residuos nucleares muy peligrosos y difíciles de gestionar.

Accidentes relacionados con la energía nuclear

La experiéncia con los accidentes nucleares és una de los principales argumentos para los detractores de la energía nuclear. En el apartado de accidentes nucleares hacemos un breve repaso a los accidentes nucleares de la história de la energía nuclear.

Recientemente hemos añadido en esta seccion una colección de videos sobre el accidente de chernobyl que corresponden a un reportaje de Discobery Channel.

Monumento a las víctimas del accidente nuclear de la central nuclear de Chernobyl

Residuos nucleares

Los residuos nucleares són junto a los accidentes nucleares uno de los principales inconvenientes de la energía nuclear. La gestion, transporte y almacenamiento de los residuos nucleares és uno de los principales problemas que los ingenieros nucleares siguen buscando soluciones mas satisfactorias.

Los residuos nucleares no se pueden destruir ni reciclar y aunque existen métodos de alamacenamiento seguros no ofrecen las suficientes garantias para los detractores de la energía nuclear.

Centrales de energía nuclear

Repaso por las diferentes plantas nucleares situadas actualmente en España para la producción de energía nuclear. Se incluyen las centrales nucleares activas las centrales nucleares inactivas y aquellas plantas nucleares afectadas por la moratória nuclear.

En el futuro ampliaremos la información sobre centrales nucleares en otros países como Chile, Estados Unidos o Francia.


Publicado por: Enmanuel angel

Diferentes tipos de energia

LOS DIFERENTES TIPOS DE ENERGÍA

ENERGÍA NUCLEAR

Es la energía liberada durante la fisión o fusión de núcleos atómicos. Las cantidades de energía que pueden obtenerse mediante procesos nucleares superan ampliamente a las que pueden lograrse mediante procesos químicos, que sólo implican las regiones externas del átomo.
ENERGÍA CINÉTICA Y POTENCIAL

La energía cinética es la energía que un objeto posee debido a su movimiento. Depende de la masa y la velocidad del objeto según la siguiente ecuación.
BIOMASA

La biomasa es el conjunto de materia orgánica renovable de origen vegetal, animal o procedente de la transformación natural o artificial de la misma. Esta variedad de posibles materiales tiene como nexo común el derivar directa o indirectamente del proceso de fotosíntesis.
ENERGÍA HIDRÁULICA

El aprovechamiento de la energía potencial del agua para producir energía eléctrica constituye en esencia la energía hidroeléctrica. Se trata de un recurso renovable y autóctono. El conjunto de instalaciones e infraestructura para aprovechar este potencial se denomina central hidroeléctrica.
ENERGÍA EÓLICA

Entre otros factores, la concienciación medioambiental y la necesidad de disminuir la dependencia de suministros exteriores influyen fuertemente en las políticas energéticas relativas a las energías renovables en sus diferentes ámbitos: investigación, desarrollo y aplicaciones.
ENERGÍA SOLAR

Es la energía radiante producida en el Sol como resultado de reacciones nucleares de fusión. Llega a la Tierra a través del espacio en forma de fotones, que interactúan con la atmósfera y la superficie terrestres.
ENERGÍA SOLAR TÉRMICA

Se trata del sistema más extendido de aprovechamiento de la energía solar. El medio para conseguir este aporte de temperatura se hace por medio de colectores.
ENERGÍA SOLAR FOTOVOLTAICA

El sistema de aprovechamiento de la energía del Sol para producir energía eléctrica se denomina conversión fotovoltaica.
ENERGÍA GEOTÉRMICA

La Tierra posee una enorme cantidad de energía en su interior. Una muestra de ellos lo constituyen, por ejemplo, los volcanes o los géiseres.

En general, es difícil aprovechar la energía térmica. Sin embargo, existen puntos en el planeta en los que se producen anomalías geotérmicas, dando lugar a gradientes de temperatura de entre 100 y 200ºC por kilómetro. Es en estos puntos donde se puede aprovechar esta energía.
ENERGÍA DEL MAR

Los mares y los océanos son inmensos colectores solares de los que extraer energía de orígenes diversos.

ENERGÍA DE LAS MAREAS

La energía estimada que se disipa por las mareas es del orden de 22000 TWh. De esta energía se consideran recuperables unos 200 TWh.

ENERGÍA TÉRMICA OCEÁNICA

La explotación de las diferencias de temperatura de los océanos ha sido propuesta multitud de veces. El más conocido pionero de esta técnica fue el científico francés George Claudi, que invirtió toda su fortuna, obtenida por la invención del tubo de neón, en una central de conversión térmica.

ENERGÍA MAREMOTRIZ

Las olas del mar son un derivado terciario de la energía solar. El calentamiento de la superficie terrestre genera viento y el viento genera las olas. La tecnología de conversión de movimiento oscilatorio de las olas en energía eléctrica se fundamenta en que la ola incidente crea un movimiento relativo entre un absorbedor y un punto de reacción que impulsa un fluido a través del generador.

Publicado por: Enmanuel angel

Diferentes tipos de energia

LOS DIFERENTES TIPOS DE ENERGÍA

ENERGÍA NUCLEAR

Es la energía liberada durante la fisión o fusión de núcleos atómicos. Las cantidades de energía que pueden obtenerse mediante procesos nucleares superan ampliamente a las que pueden lograrse mediante procesos químicos, que sólo implican las regiones externas del átomo.
ENERGÍA CINÉTICA Y POTENCIAL

La energía cinética es la energía que un objeto posee debido a su movimiento. Depende de la masa y la velocidad del objeto según la siguiente ecuación.
BIOMASA

La biomasa es el conjunto de materia orgánica renovable de origen vegetal, animal o procedente de la transformación natural o artificial de la misma. Esta variedad de posibles materiales tiene como nexo común el derivar directa o indirectamente del proceso de fotosíntesis.
ENERGÍA HIDRÁULICA

El aprovechamiento de la energía potencial del agua para producir energía eléctrica constituye en esencia la energía hidroeléctrica. Se trata de un recurso renovable y autóctono. El conjunto de instalaciones e infraestructura para aprovechar este potencial se denomina central hidroeléctrica.
ENERGÍA EÓLICA

Entre otros factores, la concienciación medioambiental y la necesidad de disminuir la dependencia de suministros exteriores influyen fuertemente en las políticas energéticas relativas a las energías renovables en sus diferentes ámbitos: investigación, desarrollo y aplicaciones.
ENERGÍA SOLAR

Es la energía radiante producida en el Sol como resultado de reacciones nucleares de fusión. Llega a la Tierra a través del espacio en forma de fotones, que interactúan con la atmósfera y la superficie terrestres.
ENERGÍA SOLAR TÉRMICA

Se trata del sistema más extendido de aprovechamiento de la energía solar. El medio para conseguir este aporte de temperatura se hace por medio de colectores.
ENERGÍA SOLAR FOTOVOLTAICA

El sistema de aprovechamiento de la energía del Sol para producir energía eléctrica se denomina conversión fotovoltaica.
ENERGÍA GEOTÉRMICA

La Tierra posee una enorme cantidad de energía en su interior. Una muestra de ellos lo constituyen, por ejemplo, los volcanes o los géiseres.

En general, es difícil aprovechar la energía térmica. Sin embargo, existen puntos en el planeta en los que se producen anomalías geotérmicas, dando lugar a gradientes de temperatura de entre 100 y 200ºC por kilómetro. Es en estos puntos donde se puede aprovechar esta energía.
ENERGÍA DEL MAR

Los mares y los océanos son inmensos colectores solares de los que extraer energía de orígenes diversos.

ENERGÍA DE LAS MAREAS

La energía estimada que se disipa por las mareas es del orden de 22000 TWh. De esta energía se consideran recuperables unos 200 TWh.

ENERGÍA TÉRMICA OCEÁNICA

La explotación de las diferencias de temperatura de los océanos ha sido propuesta multitud de veces. El más conocido pionero de esta técnica fue el científico francés George Claudi, que invirtió toda su fortuna, obtenida por la invención del tubo de neón, en una central de conversión térmica.

ENERGÍA MAREMOTRIZ

Las olas del mar son un derivado terciario de la energía solar. El calentamiento de la superficie terrestre genera viento y el viento genera las olas. La tecnología de conversión de movimiento oscilatorio de las olas en energía eléctrica se fundamenta en que la ola incidente crea un movimiento relativo entre un absorbedor y un punto de reacción que impulsa un fluido a través del generador.

Publicado por: Enmanuel angel